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Abstract:  

Al-Li alloys offer attractive combinations of high strength and low density. However, a 

tendency for delamination fracture has limited their use. A better understanding of the 

delamination mechanisms may identify methods to control delaminations through processing 

modifications. A combination of new techniques has been used to evaluate delamination fracture 

in Al-Li alloys. Both high quality electron backscattered diffraction (EBSD) information and 

valid nanoindentation measurements were obtained from fractured test specimens. Correlations 

were drawn between nano-scale hardness variations and local texture along delaminating 

boundaries. Intriguing findings were observed for delamination fracture through the combined 

analysis of grain orientation, Taylor factor, and kernel average misorientation. 
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1.  Introduction 

Al-Li alloys are of interest for use in aerospace structures due to the desirable 

combination of high strength and low density of this class of alloys. In the early 1990’s, the 

weight of the ~ 60,000 lb Space Shuttle External Tank (ET)  was reduced by ~ 7500 lb by 

redesigning the tank and replacing aluminum alloy 2219 with Al-Li 2195. The intertank structure 

of the ET is fabricated from sheet gage Al-Li alloy 2090.  In general, however, Al-Li alloys have 

found limited structural application due, in part, to the propensity for Al alloys with Li content 

greater than approximately 1.0% to exhibit a delamination fracture mode [1]. Delamination 

fracture is characterized by secondary failure along elongated grain boundaries perpendicular to 

the primary advancing crack (Fig. 1). Aerospace designers have found it difficult to account for 

and model this type of fracture, thus, limiting the use of some of the lower density Al-Li alloys. 

 

Fig. 1 Metallurgical section of L-S plane exhibiting delamination fracture. 
 

The current study investigated delamination behavior in a 2090-T81 plate alloy using 

electron backscattered diffraction (EBSD) analyses to define grain orientations and grain 

boundary types and nano indentation studies to measure grain-to-grain variations in nano 

hardness in grains adjacent to delaminations. The goal of the study was to develop a better 

understanding of the delamination fracture mechanisms in Al-Li alloys, which may enable plate 

processing modifications to reduce or eliminate delaminations. Prior studies [2] have shown that 

not all boundaries are susceptible to delamination fracture, and the distribution of delamination 
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cracks varies from sample to sample. Previous EBSD analyses of 2090 [2] showed that the 

boundaries which delaminate have greater than 30º misorientation. Furthermore, the amount of 

substructure changed abruptly at the delaminating boundaries. While one grain showed a large 

amount of stored strain energy, the adjacent grain appeared to be recrystallized. Preliminary 

nanoindentation studies of the grains adjacent to delaminations revealed an increase in 

nanohardness of approximately 20% across a single delamination, suggesting that 

nanoindentation may be a useful method to quantify retained deformation within grains stored 

during cold working. 

2.  Materials 

 The material evaluated during this study was commercially produced Al-Li alloy 2090-

T81 plate, 19 mm thick. The nominal composition by weight percent was 2.85 Cu, 2.30 Li, 0.10 

Zr, 0.07 Fe, balance Al. The typical microstructure at the mid-plane of the plate, shown in Fig. 2, 

exhibits a pancake grain morphology, elongated in the rolling direction, with aspect ratio of 

approximately 10:1 (L:S).   

 

 
Fig. 2 Tri-planar microstructure of 19 mm thick plate of 2090-T81. 
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3. Experimental Procedures 

3.1 Polishing 

Compact-tension, C(T), fracture toughness specimens were sectioned after failure in the 

longitudinal-short transverse (LS) plane with a low speed saw. After sectioning, samples were 

mounted with cyanoacrylate adhesive on 30 mm diameter aluminum cylinders, which are the 

standard size mounts for the nano indenter. Samples were mechanically polished with a precision 

polishing apparatus to produce a flat, relatively-strain-free surface. Electropolishing methods 

were used in prior experimentation, but resulted in attack at grain boundaries and poor surface 

flatness. Flatness was found to be paramount for both EBSD and nanoindentation studies.  

Mechanical polishing was performed with an automated polishing system. The depth of 

material removed was monitored with a micrometer dial gauge attached to the polishing head. 

The polishing system allowed application of load in increments of 100 grams, over a range of 0 

to 600 grams. Prior to polishing, the platen and polishing head were aligned parallel to a 

tolerance of 3 μm or less.   

The polishing procedure included: 600 grit SiC paper for 3 minutes at 125 rpm and 600 

gram load, 1200 grit SiC paper for 6 minutes at 100 rpm and 400 gram load, 3 μm diamond paste 

for 8 minutes at 75 rpm and 300 gram load, and 1 μm diamond paste for 12 minutes at 75 rpm 

and 200 gram load. An alcohol-based lubricant was used in each step listed above. For the final 

polish, a 0.05 μm colloidal silica suspension was used for 1 hour at 50 rpm and 100 gram load.  

Medium-nap cloth pads were used for the diamond and final polishing stages. Samples were 

ultrasonically cleaned in ethanol after each abrasive step. After the final polish, samples were 
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rinsed with a neutral pH soap and tap water. This technique produced a flat, relatively-stain-free 

surface, with no apparent grain boundary damage.  

3.2 Nanoindentation 

Scanned regions near delamination cracks were investigated for potential hardness 

variations between adjacent grains along the fracture path. A nanoindenter with continuous 

stiffness measurement (CSM) capabilities was used to measure hardness. The CSM device 

allows for hardness data to be obtained as a continuous function of indentation depth. Indents 

were made with a three-sided Berkovich diamond indenter tip. The nanoindenter was calibrated 

using fused silica prior to testing. Hardness measurements were obtained from the sampled 

regions based on the Oliver and Pharr Method [3]. Indentation was conducted at several 

locations along delaminations, as shown in Fig. 3, to include the following: origination (opening) 

region, delamination termination (tip) region, and an unfractured region 800 µm from the tip.  

The delamination opening region sampled was generally within 100 µm from the intersection of 

the delamination with the primary crack. At each location, nano indents were placed in 5 x 5 

arrays on each side of delamination fractures within the grains immediately above and below the 

fracture path. Each indent in the arrays was driven to a depth of 250 nm and separated by 10 µm 

in each direction. 

 

Fig. 3  Delamination regions evaluated. 

Opening Tip 
Unfractured  

Region
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3.3 Electron Backscattered Diffraction (EBSD) 

Polished samples were analyzed in a scanning electron microscope (SEM) with a LaB6 

filament. A commercially-available diffraction camera with an EBSD pattern detection system 

was interfaced with data collection software. Samples were aligned with the rolling direction 

parallel to the x-axis and the transverse direction parallel to the y-axis. Samples were tilted to 70º 

and examined at an accelerating voltage of 20 kV. A software tilt correction was applied in order 

to account for the 70º tilt in the data collection. On average, the fraction of indexed patterns (“hit 

rate”) was ninety percent or better for samples prepared by the aforementioned polishing 

protocol. A typical scanned region covered an area of roughly 400 x 600 points at 0.3 μm spatial 

resolution (step size). Scanned regions (opening, tip, unfractured region) corresponded to the 

same locations along delaminations that were evaluated with nano indentation.   

A separate EBSD study was conducted to evaluate the through-thickness variation of 

texture components in 2090 from t/4 to t/2. This study sought to address the frequency of 

boundary types (or grain orientation pairs) similar to those found to delaminate.   

3.4 Grain Orientation and Texture Analyses 

The EBSD data sets were analyzed to yield grain boundary misorientation, kernel 

average misorientation, identification of grains by proximity to characteristic orientations (or 

texture components), and grain boundary orientation distribution functions. Detailed, color-

coded maps, images and charts were produced where applicable. Orientation distribution 

functions (ODFs) and pole figures were calculated by harmonic series expansion. Sample 

orientation was verified by analyzing (100), (110), and (111) pole figures generated from the 

calculated ODFs. Kernel average misorientation (KAM) was calculated using the average 
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misorientation of a given pixel with its nearest neighbors within a defined distance 

(approximately 1 μm for this study), excluding misorientations greater than a pre-set tolerance 

value (3o for this study). The appearance of KAM may be interpreted as the amount of local 

lattice rotation. Taylor factors (TF) as a function of grain orientation were calculated based on 

stresses believed to contribute to delamination fracture.  

4. Results and Discussion 

4.1 Nanoindentation 

Nanoindentation testing was used to evaluate grain-to-grain nanohardness variations in 

several regions along delamination fractures. Indentation data revealed that this Al-Li alloy 

exhibited a reverse indentation size effect (RISE). RISE is characterized by an increase in 

hardness with increasing indentation depth, which is the reverse of the indentation size effect 

(ISE) observed for other metallic materials in [4]. Fig. 4 illustrates typical hardness versus 

contact depth (depth of penetration) plots for indents at each region sampled. A single 

nanohardness value was determined for each indent based on an average of all the hardness data 

collected within the 100 to 200 nm range of contact depth, where the hardness was stabilized. 

From these results, average hardness values for grains directly above and below delaminations 

were calculated.  
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Fig. 4  Typical hardness vs depth plot for a single nanoindent at each region sampled.  The range of data 
exhibiting the reverse indentation size effect (RISE) is noted by the arrow. 
 

The results from nanoindentation are shown in Table 1 for the opening, tip, and 

unfractured regions for three separate delaminations, representing a total of approximately 300 

indents. Small differences in hardness were found in the surrounding grains adjacent to the 

fracture. The maximum percent difference in nanohardness between the grains above and below 

delamination fractures was roughly 7% for all regions sampled with an average value slightly 

above 3%. The largest differences were generally found in the opening region, ranging from 3 to 

7% in the grains adjacent to the fracture. At regions around the delamination tip, hardness values 

were more uniform within a range of 0.5 to 3% for grains above and below the fracture. Small 

percent differences in nano hardness were also found along the same boundary in an unfractured 

region at a distance of 800 µm past the delamination tip. Large differences in hardness were not 

found in the grains adjacent to delaminations as previously indicated. Therefore, there does not 

appear to be a significant difference in the retained cold work within the grains. 

 

Table 1  Nanohardness Results at Opening, Tip, and Unfractured Regions for Three Delaminations 

 

Region Delamination 
Number 

Avg. Hardness 
Above 

Delamination, 
GPa 

(# indents) 

Avg. Hardness 
Below 

Delamination, 
GPa 

(# indents) 

Percent 
Difference, 

% 

Opening 1 2.25 (25) 2.18 (24) 3.20 



9 
 

2 2.47 (16) 2.33 (15) 5.84 

3 2.80 (21) 2.62 (15) 6.79 

Delamination 
Tip 

1 2.39 (20) 2.32 (21) 3.56 

2 2.67 (13) 2.65 (14) 0.69 

3 2.68 (17) 2.63 (14) 1.95 

Unfractured 
Region 

(800 μm from tip) 

1 2.28 (19) 2.25 (14) 1.30 

2 2.48 (14) 2.39 (20) 3.64 

3 2.49 (13) *** *** 

 
 ***= Insufficient test data 
 

 
 

4.2 Texture and Misorientation 

Delamination cracks in aluminum-lithium alloys tend to occur along high angle grain 

boundaries with misorientations greater than 30º [2]. In this study, all delaminations occurred 

along grain boundaries with misorientations between 50º and 60º. The “Brass” grain orientation 

is commonly found in Al-Li-Zr alloys and Al-Cu-Zr alloys (e.g. Supral), and is prevalent in 2090 

[2, 5-8]. The pole figures and ODFs in Fig. 5 show a well defined Brass texture. Face-centered 

cubic crystals have 24 equivalent orientations which can be obtained by rotation about crystal 

symmetry axes. Texture variants are related by 180º rotations about the orthotropic sample 

symmetry axes (RD, ND, TD) and share the same form of Miller indices. When these rotation 

axes do not coincide with the crystal symmetry axes, the variants are not crystallographically 

equivalent. Brass has two variants, equivalent to 180º rotation about the non-symmetric rolling 

direction axis, <2-1 1>. In this study, Bs1 is defined by the Euler angles (35, 45, 0) or Miller 

indices (011)[2-1 1] and Bs2 is defined by the Euler angles (55, 90, 45) or the Miller indices 

(110)[1-1 2].   
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Fig. 5  Texture results for 2090-T81 plate for the region from t/2 to t/4.  a) ODF showing ideal Brass 
orientation along β-fiber; b) Pole figures. 
Grain boundaries are typically characterized by misorientation, expressed as angle/axis 

pairs. Coincident site lattice (CSL) nomenclature, denoted as Σn (where n is the inverse of the 

fraction of lattice points common to both lattices), is used to categorize grain misorientations as 

low index (low Σ number) or high index (high Σ number). Ideal Brass variants show a low index 

misorientation, equivalent to a Σ3 (60°/<111>). The coherent twin misorientation in fcc 

polycrystalline materials is Σ3, with a {111} twin plane. All points on the {111} plane are 

common to both lattices. Since the grain boundary plane for the Brass grains in this study is close 

to {011}, the Bs1/Bs2 boundary is an “incoherent” twin. Incoherent boundaries are known to be 

high-energy boundaries; the boundary plane includes lattice sites which are not common to both 

crystals. A tendency for intergranular fracture along Brass texture variants was observed in the 

delaminations studied (Fig. 6). The fractured boundaries appeared qualitatively flatter and longer 

than other boundaries. The grains adjacent to the fracture were on the order of several 

millimeters in length and 50 to 200 μm in width with elongation-to-thickness aspect ratios near 

10:1, as observed in [6]. 

Bs1 

(a) (b)

Bs2
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Fig. 6  Typical texture components identified adjacent to delaminations.  The delamination in this image is 
noted by the arrow. 
In the through-thickness scans (beyond the delamination crack tips), numerous layers of 

Brass oriented grains were present within the sample as indicated in Fig. 7a. The EBSD software 

was used to color-code grain orientations to the nearest deformation texture component (within 

20º of their respective ideal orientations), using the 12 most common (β-fiber) components and 

variants. Approximately 70% of the material from t/4 to t/2 was characterized as Bs1 or Bs2 

grains; similar results were reported for Al-6Cu-0.4Zr [5, 6]. Two of the delaminations on the 

sample corresponded to locations within this large scanned area, as noted in Fig. 7a within the 

circled regions and marked by  
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Bs2 
Cu1 
Cu2 

Cube 
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Fig. 7    Grain orientation and Taylor factor distributions for plate thickness from t/4 to t/2. 
Delaminations were found to occur at locations shown.   a) Distribution indicates predominance of 
Brass orientations, Bs1 and Bs2 and b) Taylor factor map indicating high and lowest TF associated 
with Brass orientations.  

 

arrows to the higher magnification view. Roughly 30% of the Bs1 grain boundaries in this region 

were bordered by a Bs2 grain. Therefore, the occurrence of twin-related Brass-variant grain 

boundaries was seen to be a common from t/4 to t/2, similar to results noted in [5]. 

4.3 Kernel Average Misorientation  

Kernel average misorientation (KAM) shows local lattice distortion and may indicate 

stored-strain energy, localized deformation, and high dislocation density within a given region. 

Fig. 8 shows KAM for a typical delamination from the opening to tip regions with a magnified 

section shown of the tip. Sub-grain boundaries that fall within the pre-set misorientation limit of 

3º appear as KAM and are particularly found in the grain above the fracture for the delamination 

Taylor Factor Grain Orientations 

 100 μm 

Delaminations 
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shown. These sub-grain boundaries should be disregarded since they share no relationship with 

the localized deformation analyzed by KAM. At the opening regions of delaminations, both sides 

contained significant KAM that was nearly equal in density and magnitude as seen in Fig. 8. 

Strong deformation in these regions was presumed to result from being within the plastic zone 

associated with the larger primary crack passing near the opening regions.   

 

Fig. 8  KAM concentrations in grains bordering a delamination. (a) KAM distribution from opening to tip 
of a typical delamination, (b) Image quality map corresponding to the enlarged region highlighted in 
(a) near the tip region, and (c) KAM distribution for the same enlarged region.  
At regions further down the delamination, appreciable levels of KAM can be found on 

one side of the delamination boundary, but not the other. These long bands of KAM appear 

within approximately 5 µm of the fractured boundary. The KAM concentration appears to 

diminish near the tip of the delamination. The location of delamination tip was identified with an 

SEM and has been shown in Fig. 8, image (b). The much thinner, black line ahead of the tip 

represents the continuation of grain boundary which has not fractured. The higher levels of KAM 

on one side of the boundary are consistent with a lack of slip accommodation across the 

delaminating interface.   

Significant differences in nanohardness are expected within a few microns of fractured 

boundaries, but only a few indents fell within that narrow region. The majority of the indents fell 

within grain interiors, approximately 5 to 10 µm away from the edge of the delamination. Future 

c) 

Opening 

a) 

b) Tip

Tip 

25 µm 
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research will address the connections between KAM and nano-scale properties. It is anticipated 

that larger differences in hardness will be found in these regions of increased KAM.   

4.4 Taylor Factor  

 The Taylor theory for polycrystalline materials provides a means of predicting the 

anisotropy of deformation, based on the orientation distribution of a polycrystalline aggregate 

and the boundary conditions of individual grains. TSL OIM software was used in this study to 

produce maps of grain-specific Taylor factors (TF). Spatially-correlated orientation information 

from EBSD scans was analyzed in conjunction with a crystallographic description of the slip 

systems and assumptions about the loading environment (expressed as a stress tensor). Finite 

element simulations and mechanical test results performed at the University of Illinois indicated 

that the initiation and propagation of delamination cracks stemmed from a combination of 

normal and shear stresses at the grain boundary [9]. Generally, grain orientations with higher TFs 

exhibit a greater resistance to deformation [10]. 

When the TFs were computed for delaminating regions with the simultaneous 

consideration of normal stress and out-of-plane shear stress, σzz and τyz, there was a large 

disparity noticed between twin-related variants on either side of a fracture. The TFs for grains 

within the through-thickness scan from t/4 to t/2 are shown in Fig. 7b alongside grain 

orientations for the same region. The location of two delaminations noted previously within this 

region have been circled and noted with arrows. The location of the delaminations coincided 

with Bs1/Bs2 grain pairs which exhibited the largest difference in TF. Typically, one Brass 

variant had a lower TF around 2.6, while the other Brass variant on the opposing side of the 

fracture was typically near 3.5. These results show a correlation between delamination fracture 
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and TFs. Delaminations occur along boundaries with a distinct orientation difference; one which 

results in large TF differences between the grains.   

 
4.5 TF and KAM correlation 

 A correlation was noted between the occurrence of KAM in grains bordering a 

delamination and TF, as illustrated in Fig. 9. Concentrations of KAM were observed along only 

one side of a delaminating interface. The grain exhibiting the narrow band of KAM was 

consistently the lower TF grain in the pair. Similar concentrations of KAM along low TF grain 

boundaries were observed in [10], where it was found that low TF grains sometimes behave as 

soft grains in the presence of high TF grains. The KAM and TF distributions observed in the 

current study support the hypothesis that a lack of slip accommodation across the interface, 

resulting in an excess of deformation damage on the (crystallographically) “softer” side, 

contributing to delamination fracture.   

 

 

Fig. 9 Correlation between KAM and TF for a typical delamination.  (a) KAM distribution along 
delamination and (b) TF distribution for grains bordering the delamination.   

 
 

5. Conclusions 

b) TF 

a) KAM 25 µm 

25 µm 
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Through this research, a repeatable and precise polishing method was developed, which is 

applicable to the study of many materials including Al-Li alloys. The refined mechanical 

polishing method was specifically tailored to generate high-quality EBSD and nanoindentation 

data in regions surrounding delamination without further surface preparation. Of interest in the 

study of Al-Li alloy 2090, emphasis was placed on several key microtexture analyses using 

EBSD such as: grain orientation and misorientation, kernel average misorientation (KAM), and 

Taylor factor (TF). Several interesting findings and correlations were drawn from the nano-scale 

and microstructural property variations near delamination fracture: 

• Nanoindentation revealed small differences in hardness within the bulk of the sampled 

grains. However, KAM studies indicate that potentially higher variations in stored strain 

energy may exist along localized regions near delaminating grain boundaries. 

•  Brass grain orientations were found to be predominant in the mid-thickness region of 

the plate along with the presence of a dominant β-fiber. A tendency was observed for 

delaminations to be bordered by near-Σ3, twin-related brass variants.   

• Boundaries susceptible to delamination were found to have significant differences in TFs 

between the adjacent grains.   

• KAM revealed preferentially higher amounts of deformation along one side of 

delamination boundaries. These findings suggest that a lack of slip accommodation 

across interfaces may contribute to the increase in local deformation along one side.   

• A correlation between KAM and TFs was observed: the grains with higher KAM were 

found to be low TF grains. The grains with significantly lower KAM corresponded to 

high TF grains. This correlation further supports our hypothesis for a lack of slip 

accommodations along boundaries which experience delamination.     
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